Sluice networks: Learning what to share between loosely related tasks

نویسندگان

  • Sebastian Ruder
  • Joachim Bingel
  • Isabelle Augenstein
  • Anders Søgaard
چکیده

Multi-task learning is motivated by the observation that humans bring to bear what they know about related problems when solving new ones. Similarly, deep neural networks can profit from related tasks by sharing parameters with other networks. However, humans do not consciously decide to transfer knowledge between tasks. In Natural Language Processing (NLP), it is hard to predict if sharing will lead to improvements, particularly if tasks are only loosely related. To overcome this, we introduce SLUICE NETWORKS, a general framework for multi-task learning where trainable parameters control the amount of sharing. Our framework generalizes previous proposals in enabling sharing of all combinations of subspaces, layers, and skip connections. We perform experiments on three task pairs, and across seven different domains, using data from OntoNotes 5.0, and achieve up to 15% average error reductions over common approaches to multi-task learning. We show that a) label entropy is predictive of gains in sluice networks, confirming findings for hard parameter sharing and b) while sluice networks easily fit noise, they are robust across domains in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Group Sparse Multi-task Learning via Trace Lasso

In multi-task learning (MTL), tasks are learned jointly so that information among related tasks is shared and utilized to help improve generalization for each individual task. A major challenge in MTL is how to selectively choose what to share among tasks. Ideally, only related tasks should share information with each other. In this paper, we propose a new MTL method that can adaptively group c...

متن کامل

Mutual Influence Potential Networks: Enabling Information Sharing in Loosely-Coupled Extended-Duration Teamwork

Complex collaborative activities such as treating patients, co-authoring documents and developing software are often characterized by teamwork that is loosely coupled and extends in time. To remain coordinated and avoid conflicts, team members need to identify dependencies between their activities — which though loosely coupled may interact — and share information appropriately. The loose-coupl...

متن کامل

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

The Potential Role of Tasks in Iranian Pre-university Textbooks

The present study investigated the potential role of tasks in engaging Iranian EFL learners in task-supported language learning, affecting on learner-centered instruction and the correspondence between the objectives and contents in current pre-university English course book (Learning to Read English for Pre-University Students). To do this, 100 Iranian EFL teachers of pre-university grade were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.08142  شماره 

صفحات  -

تاریخ انتشار 2017